Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-446159

RESUMO

The beta-coronavirus SARS-CoV-2 is at the origin of a persistent worldwide pandemic. SARS-CoV-2 infections initiate in the bronchi of the upper respiratory tract and are able to disseminate to the lower respiratory tract eventually causing acute severe respiratory syndrome with a high degree of mortality in the elderly. Here we use reconstituted primary bronchial epithelia from adult and children donors to follow the infection dynamic following infection with SARS-CoV-2. We show that in bronchial epithelia derived from adult donors, infections initiate in multi-ciliated cells. Then, infection rapidly spread within 24-48h throughout the whole epithelia. Within 3-4 days, large apical syncytia form between multi-ciliated cells and basal cells, which dissipate into the apical lumen. We show that these syncytia are a significant source of the released infectious dose. In stark contrast to these findings, bronchial epithelia reconstituted from children donors are intrinsically more resistant to virus infection and show active restriction of virus spread. This restriction is paired with accelerated release of IFN compared to adult donors. Taken together our findings reveal apical syncytia formation as an underappreciated source of infectious virus for either local dissemination or release into the environment. Furthermore, we provide direct evidence that children bronchial epithelia are more resistant to infection with SARS-CoV-2 providing experimental support for epidemiological observations that SARS-CoV-2 cases fatality is linked to age. Significance StatementBronchial epithelia are the primary target for SARS-CoV-2 infections. Our work uses reconstituted bronchial epithelia from adults and children. We show that infection of adult epithelia with SARS-CoV-2 is rapid and results in the synchronized release of large clusters of infected cells and syncytia into the apical lumen contributing to the released infectious virus dose. Infection of children derived bronchial epithelia revealed an intrinsic resistance to infection and virus spread, probably as a result of a faster onset of interferon secretion. Thus, our data provide direct evidence for the epidemiological observation that children are less susceptible to SARS-CoV-2.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-386904

RESUMO

Following the emergence of SARS-CoV-2, the search for an effective and rapidly available treatment was initiated worldwide based on repurposing of available drugs. Previous reports described the antiviral activity of certain tyrosine kinase inhibitors (TKIs) targeting the Abelson kinase 2 against pathogenic coronaviruses. Imatinib, one of them, has more than twenty years of safe utilization for the treatment of hematological malignancies. In this context, Imatinib was rapidly evaluated in clinical trials against Covid-19. Here, we present the pre-clinical evaluation of Imatinib in multiple models. Our results indicated that Imatinib and another TKI, the Masitinib, exhibit an antiviral activity in VeroE6 cells. However, Imatinib was inactive in a reconstructed bronchial human airway epithelium model. In vivo, Imatinib therapy failed to impair SARS-CoV-2 replication in a golden Syrian hamster model despite high concentrations in plasma and in the lung. Overall, these results do not support the use of Imatinib and similar TKIs as antivirals in the treatment of Covid-19.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20047886

RESUMO

We modeled the viral dynamics of 13 untreated patients infected with SARS-CoV-2 to infer viral growth parameters and predict the effects of antiviral treatments. In order to reduce peak viral load by more than 2 logs, drug efficacy needs to be greater than 90% if treatment is administered after symptom onset; an efficacy of 60% could be sufficient if treatment is initiated before symptom onset. Given their pharmacokinetic/pharmacodynamic properties, current investigated drugs may be in a range of 6-87% efficacy. They may help control virus if administered very early, but may not have a major effect in severe patients.

4.
J. trop. med. (Lond. Online) ; (2010): 1-5, 2010.
Artigo em Inglês | AIM (África) | ID: biblio-1263702

RESUMO

National malaria management policy is based upon the availability of effective and affordable antimalarial drugs. This study was undertaken to evaluate the quality of the treatment of uncomplicated malaria cases in Bangui; an area with multidrug-resistant parasites; at a time preceding implementation of a new therapeutic policy relying on the artemisinin derivative combined treatment artemether-lumefantrine. A cross-sectional study was carried out in Bangui city to assess availability of antimalarial drugs and the performances of health workers in the management of uncomplicated malaria. Availability of drugs was recorded in all drugs wholesalers (n=3); all pharmacies in health facilities (n=14); private drugstores (n=15); and in 60 non-official drug shops randomly chosen in the city. Despite a limited efficacy at the time of the survey; chloroquine remained widely available in the official and nonofficial markets. Artemisinin derivatives used in monotherapy or in combination were commonly sold. In health care facilities; 93of the uncomplicated malaria cases were treated in the absence of any laboratory confirmation and the officially recommended treatment; amodiaquine-sulfadoxine/pyrimethamine; was seldom prescribed. Thus; the national guidelines for the treatment of uncomplicated malaria are not followed by health professionals in Bangui. Its use should be implemented while a control of importation of drug has to be reinforced


Assuntos
Antimaláricos/uso terapêutico , Atitude , Avaliação de Medicamentos , Malária/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...